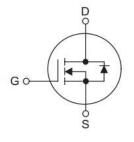
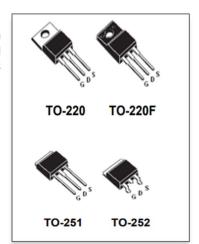


4A, 650V N-CHANNEL POWER MOSFET

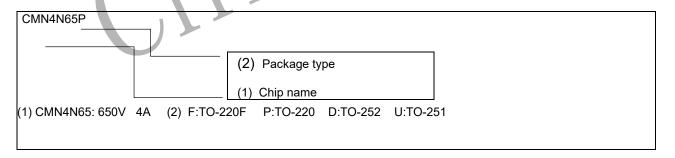
DESCRIPTION


The **4N65** is a high voltage power MOSFET designed to have better characteristics, such as fast switching time, low gate charge ,low on-state resistance and have a high rugged avalanche characteristic. This power MOSFET is usually used in high speed switching applications including power supplies , PWM motor controls, high efficient DC to DC converters and bridge circuits.


FEATURES

- $*R_{DS(ON)} < 2.5\Omega @V_{GS} = 10 V$
- *Fast Switching Capability
- *Avalanche Energy Specified
- *Improved dv/dt Capability, High Ruggedness

SYMBOL


- 1. Gate
- 2. Drain
- 3. Source

Package Description

Product Model	Package Type	Mark Name	Indentification Code	Package
CMN4N65P	TO-220	CMN4N65	P	Tube
CMN4N65F	TO-220F	CMN4N65	F	Tube
CMN4N65U	TO-251	CMN4N65	U	Tube
CMN4N65D	TO-252	CMN4N65	D	Tape Reel

ABSOLUTE MAXIMUM RATINGS (TC = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		Voss	650	V	
Gate-Source Voltage	ge		Vgss	±30	V
Avalanche Current (Note 2)		lar	4.4	Α	
Drain Current Continuous(Tc=25°C)			4.0	A	
Brain Garroni	Continuou	ıs(Tc=100°C)	lD	2.5	A
Pulsed (lote 2)	Ідм	16	А
Avalanche Energy	valanche Energy Single Pulsed (Note 3		Eas	260	mJ
Repetitive ((Note 2)	Ear	10.6	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns	
		TO-220		106	W
Power Dissipation	Tc=25°C	TO-220F	PD	35	W
		TO-252/TO-251]	50	W
Junction Temperature		TJ	+150	°C	
Operating Temperature		Topr	-55~+150	°C	
Storage Temperature		Тѕтс	-55~+150	°C	

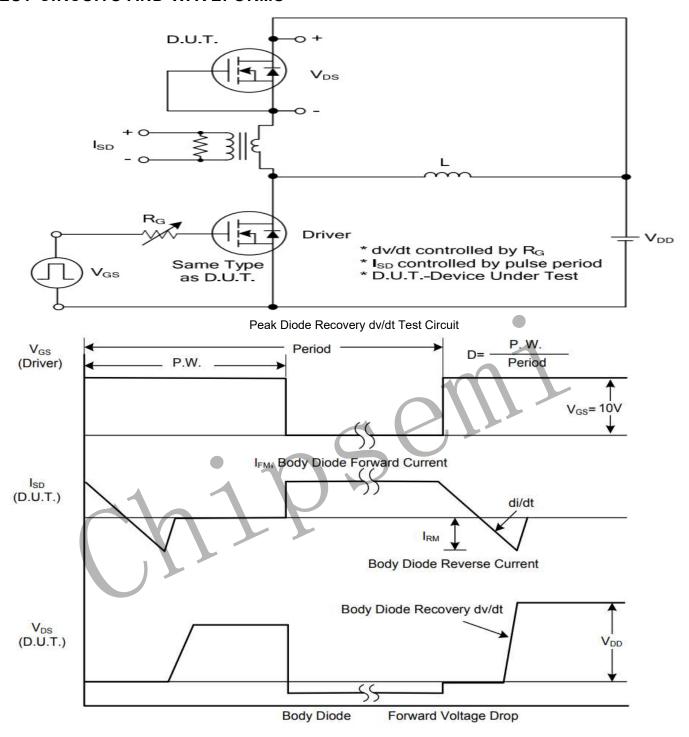
Note:

- Absolute maximum ratings are those values beyond which the device could be permanently damaged.
 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 30mH, IAS = 4A, VDD = 50V, RG = 25 Ω , Starting TJ = 25 $^{\circ}$ C
- 4. ISD≤4.4A, di/dt ≤200A/μs, VDD≤BVDSS, Starting TJ = 25°C

THERMAL CHARACTERISTICS

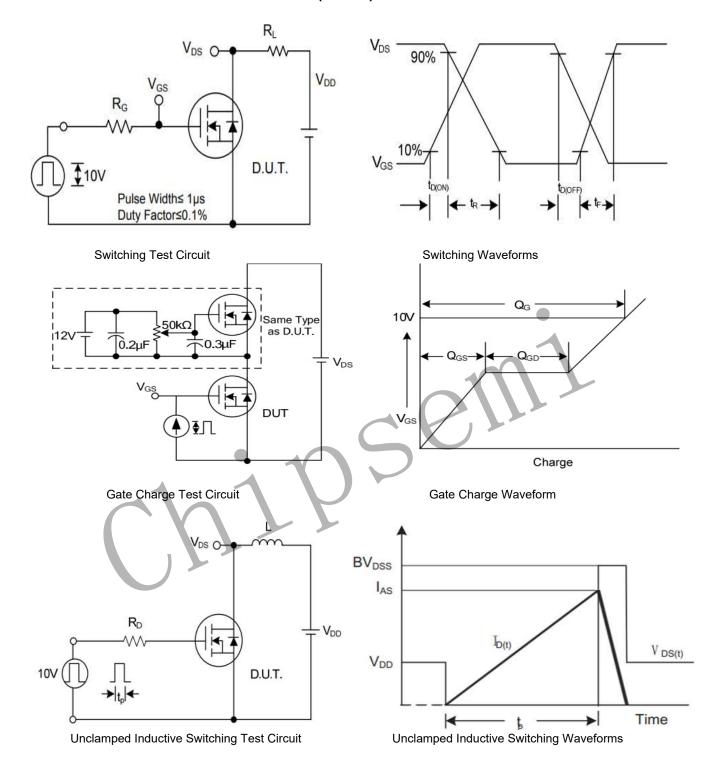
Symbol	Parameter	PACKAGE	RATINGS	Units
		TO-220	1.18	°C/W
Rejc	Junction-to-Case	TO-220F	3.5	°C/W
		TO-252-TO-251	2.5	°C/W
Reja	Junction-to-Ambient	TO-220F/TO-220	62.5	°C/W
		TO-252-TO-251	110	°C/W

ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified)

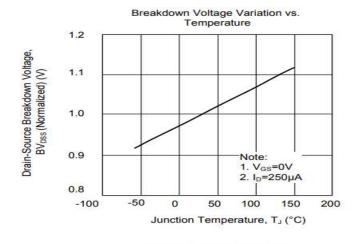

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS				•			
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} = 0 V, I _D = 250µA	650		900	٧
Drain-Source Leakage Current		IDSS	V _{DS} = 650 V, VGS = 0 V			120	nA
Gate-Source Leakage Current	Forward	Igss	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
	Reverse		V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.3		3.8	V
Static Drain-Source On-State Resista	ance	RDS(ON)	V _{GS} = 10 V, I _D = 2A	1.5		2.6	Ω
DYNAMIC CHARACTERISTICS				•			
Input Capacitance		Cıss		520	524	529	pF
Output Capacitance		Coss	V _{DS} = 25 V, V _{GS} = 0V , f = 1MHz		62		pF
Reverse Transfer Capacitance		Crss	-1 - 11VII IZ		10		pF
SWITCHING CHARACTERISTICS							
Total Gate Charge		Q_{G}	V _{DS} = 520V, I _D = 4.0A, V _{GS} = 10V (Note 1, 2)		100	120	nC
Gate-Source Charge		Q_GS			17	19	nC
Gate-Drain Charge		Q _{GD}			20	26	nC
Turn-On Delay Time		t _{D(ON)}	$V_{DS} = 325V, I_{D} = 4.0A,$ $R_{G} = 25\Omega \text{ (Note 1, 2)}$		45	85	ns
Turn-On Rise Time		t _R			100	140	ns
Turn-Off Delay Time		tD(OFF)			200	240	ns
Turn-Off Fall Time		t _F			130	150	ns
SOURCE- DRAIN DIODE RATINGS	AND CHA	RACTERISTIC	S				
Maximum Continuous Drain-Source Diode Forward Current		Is				4.4	Α
Maximum Pulsed Drain-Source Diode Forward Current		Ism				17.6	А
Drain-Source Diode Forward Voltage		VsD	V _{GS} = 0 V, I _S = 4A	0.7		1.4	V
Reverse Recovery Time		t _{rr}	$V_{GS} = 0V, I_S = 4.4A,$		250		ns
Reverse Recovery Charge		Qrr	-dl _F /dt = 100 A/μs (Note 1)		1.5		μC
Motor							

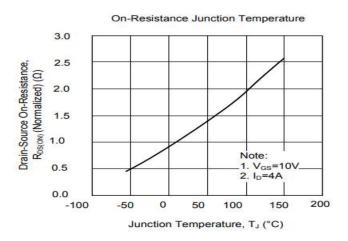
Note:

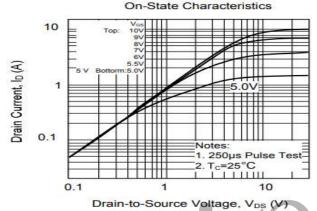
- 1. Pulse Test: Pulse width≤300µs, Duty cycle≤2%.
- 2. Essentially independent of operating temperature

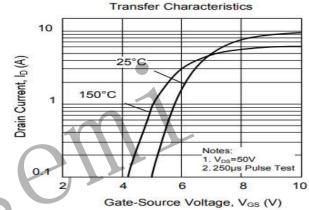

TEST CIRCUITS AND WAVEFORMS

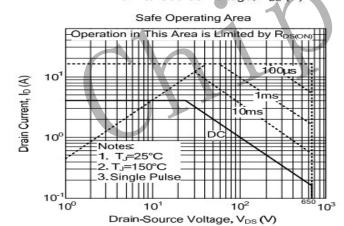
Peak Diode Recovery dv/dt Waveforms

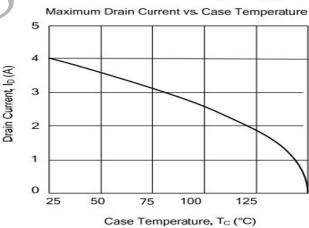


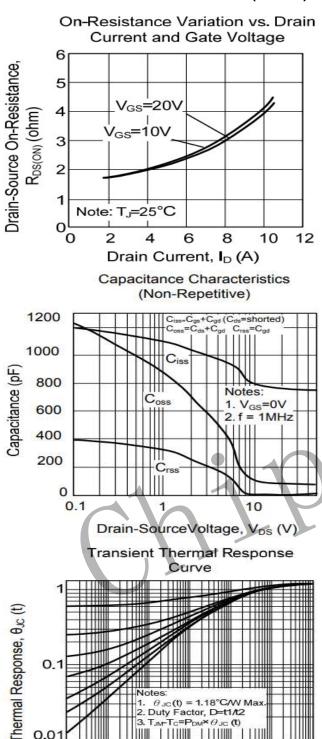

TEST CIRCUITS AND WAVEFORMS(Cont.)



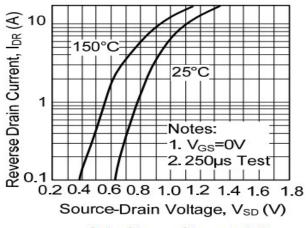



YPICAL CHARACTERISTICS

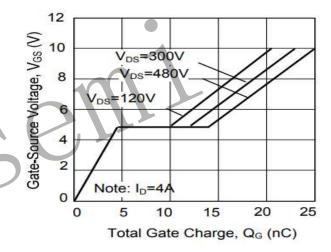




TYPICAL CHARACTERISTICS (Cont.)



2. Duty Factor, D=t1/t2


4 1E-3 0.01 0.1

Square Wave Pulse Duration, t₁ (sec)

On State Current vs. Allowable Case Temperature

Gate Charge Characteristics

Power Dissipation 120 100 80 60 40 20 80 100 120140 160 20 40 60 Tc (°C)

Attentions

- Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. Please do not exceed the absolute maximum ratings of the device when circuit designing.
- When installing the heat sink, please pay attention to the torsional moment and the smoothness of the heat sink.
- MOSFET is the device which is sensitive to the static electricity, it is necessary to protect the device from being damaged by the static electricity when using it.
- Chipsemi reserves the right to make changes in this specification sheet and is subject to change without prior notice.

Appendix

Revision history:

Date	REV.	Description	Page
2023.3	1.0	Original	8

sell